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Abstract: The title compound was prepared in six steps from dicumarol. 
Subsequent resolution with O-methylmandelic  acid gave either enantiomer 
in >98% ee. © 1997 Elsevier Science Ltd. 

The endowment of chemical systems with the property of  

chirality is an increasingly important problem. Typical approaches 

involve either the incorporation of commercially available (or known) 

chiral units into existing achiral systems or the design of new chemical 

systems around the structure of such chiral units. Some of the most 

widely-applicable and useful chiral units for this purpose are 

l,l '-binaphthalene-2,2'-diol (BIN©L, 1) and its derivatives. 1 Despite 

this remarkable, but limited utility, very little effort has been reported to 

develop BIN©L-l ike  phenols with markedly different core 

s t ruc tures .  2,3 Motivated by our continued interest in chiral 
F igure  1. Cyclic structure with 

C2-symmetric reagents and ligands, 4 we considered the possibility of a C2-symmetric chiral wall. 

developing a new class of bis(hydroxyaryts) (BOAs) with two basic 

characteristics: (1) an orientation of aromatic groups capable of  producing cyclic structures bearing an 

enveloping C2-symmetric chiral wall 5,6 (Figure 1); and (2) a hydrocarbon scaffolding for maximal stability. 

Cyclopentane 2 was targeted as a prototype of such a class of compounds. 7 Recently, the synthesis and 

resolution of a structurally-related dioxolane, 3, was described. 2 We report here the first synthesis and 

resolution of cyclopentane 2, for which we propose the trivial name "BOPCOP." 

~ H 

H 

2 

X &- H 

3 

2589 



2590 

OH OH 

4 

OMe 

Me 

d 
r 

86% 

Scheme 1. a 

0 0 

99% 

87% R = Me 

OMe 

Me 

c 
v 

57% 

7 8 

e 
r 

84% 

f f - ' -  (+)-9: R = Me 
95% ~ (+)-2: R H 

a (a) (l) 10% KOH (aq.), reflux, 12 h (2) Conc. HCI; (b) Me2SO4 / KOH, EtOH; (c) TiC14 / Zn, THF, rt, 22 h; (d) Et3SiH / 
CF3CO2H, CH2CI 2, rt, 24 h; (e) KOtBu, DMSO, 100 °C, 6 h; (f) BBr3, CH2C12, 0 °C - rt, 5.5 h. 

Racemic BOPCOP was prepared in six steps from commercially-available dicumarol (4) (Scheme 1). 

Decarboxylative hydrolysis of 4 (99%) 8 followed by dimethylation of the resulting bisphenol 5 with Me2SO4 / 

KOH in EtOH 9 yielded diketone 6 (87%). Reductive cyclization of 6 with TiCI4 / Zn in THF 10 afforded 

cyclopentene 7 (57%), which was reduced with Et3SiH / CF3CO2H in CH2C1211 to the cis-cyclopentane 8 

(86%). 12 Isomerization of 8 with KOtBu in DMSO 13 gave the desired trans isomer 914 (84%) which was 

demethylated with BBr3,15 yielding (+_)-2 (95%). It is noteworthy that no distillation or chromatography steps 

were required in this reaction sequence. 

BOPCOP was resolved via its O-methylmandelic acid diester (Scheme 2). Esterification of (+)-2 with 

(R)-(-)-O-methylmandelic acid (DCC, DMAP) 16 followed by flash chromatography (1:1 n-hexane-ether) gave 

disester 10 and the corresponding diastereomer as a 1:1 mixture. Crystallization of  this mixture from 2:1 

Skelly B-ether yielded 10 (60%) in >_98% de (IH NMR). Single-crystal X-ray diffraction revealed the assigned 

(R, R) ring stereochemistry, r 7 Hydrolysis of diester I0 with K2CO3 / MeOH / H2018 afforded (R, R)-(-)-2 in 

_>98% ee { [o~]~ 4 = -93.7 (c 0.95, CHC13)}, determined by re-esterification with (R)-(-)-O-methylmandelic acid 

and integration of the I H NMR methoxy signals of the resulting diester. A similar resolution using (S)-(+)-O- 

methylmandelic acid gave (S, S)-(+)-2, also in >-98% ee {[o~] 24 = +93.7 (c 0.95, CHCI3)}. 
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a (a) iR)-(-)-O-methylmandelic acid, DCC, DMAP, CH2CI 2, rt, 5 h. (b) K2CO 2, MeOH, H20, rt, 12 h. 

In conc lus ion ,  we have  deve loped  a s t ra ightforward synthet ic  route  to B O A  2 in enant iopure  form. The  

use  o f  this and  s imi lar  C2-symmet r i c  B O A s  in sy s t ems  original ly emp loy ing  B I N O L ,  and the d e v e l o p m e n t  o f  

unique appl icat ions for such B O A s  should provide numerous  intr iguing arenas o f  invest igat ion.  
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S E L E C T E D  S P E C T R O S C O P I C  D A T A  

2: 13C NMR (CDC13 75 MHz): 8 (ppm) 152.9 (s), 130.9 (s), 127.4 (d), 127.0 (d), 121.0 (d), 115.5 (d), 45.6 (d), 27.8 (t), 23.9 

(t); 1HNMR (CDCI3, 300MHz): 8(ppm) 8.09 (br s, 2H), 7.18 (d, J=7 .1  Hz, 2H), 7.10 (td, Jl =7 .7Hz,  J2 = 1.2Hz, 

2 H), 6.93-6.83 (m, 4 H), 3.41 (br s, 2 H), 2.18-1.89 (m, 6 H). 

7: 13C NMR (CDCI 3 75 MHz): 8 (ppm) 156.9 (s), 137.2 (s), 129.8 (d), 128,5 (s), 127.5 (d), 120.1 (d), 110.7 (d), 55.1 (q), 37.7 

(t), 23.0 (t); IH NMR (CDCI 3, 300 MHz): 8 (ppm) 7.09 (td, J1 = 7.8 Hz, J2 = 1.6 Hz, 2 H), 6.91 (dd, J1 = 7.6 Hz, 

J2 = 1.7Hz. 2H), 6.78-6.68 (m, 4H), 3.61 (s, 6H), 2.89 (t, J = 7 . 5 H z ,  4H), 2.07 (quintet, J = 7 . 5 H z ,  2H). 

8: 13C NMR (CDC13 75 MHz): 8 (ppm) 157.3 (s), 131.7 (s), 127.8 (d) 126.2 (d), 119.2 (d), 109.1 (d), 54.8 (q), 41.9 (d), 30.3 

(t), 24.3 it); IHNMR (CDCI 3, 300MHz): 8(ppm) 6.96 (t, J = 7 . 8 H z ,  2H), 6.75 (d, J = 7 . 4 H z ,  2H), 6.65 (t, J = 7 . 5 H z ,  

2 H), 6.53 (d, J = 8.1 Hz, 2 H), 3.89 (br s, 2 H), 3.47 (s, 6 H), 2.08-1.95 (m, 5 H), 1.88-1.72 (m, 1 H). 

9: 13C NMR (CDCI 3 75 MHz): 8 (ppm) 157.7 (s), 132.9 (s), 127.1 (d), 126.4 (d), 120.5 (d), 110.4 (d), 55.4 (q), 44.0 (d), 34.0 

(t), 24.0 (t); IH NMR (CDCI 3, 300 MHz): 8 (ppm) 7.21 (d, J = 7.6 Hz, 2 H), 7.04 (t, J = 7.9 Hz, 2 H), 6.82-6.74 (m, 4 H), 

3.72 (s, 6 H), 3.70-3.63 ira, 2 H), 2.35-2.23 (m, 2 H), 1.92-1.82 (m, 2 H), 1.71-1.46 (m, 2 H). 

10: 13C NMR (CDC13 75 MHz): 8 ipprn) 169.1 (s), 148.2 (s), 136.2 is), 135.0 (s), 129.4, 128.9, 127.6, 126.9, 126.6, 126.4, 

121.6 (d), 82.4 (d), 57.3 (q), 43.2 (d), 34.1 (t), 22.6 (t); 1H NMR (CDCI 3, 300 MHz): ~5 (ppm) 7.61-7.34 (m, 10 H), 7.05-6.83 

(m, 4 H), 6.82 (dd, J1 = 1.4 Hz, J2 = 7.7 Hz, 2 H), 6.48 (dd, J1 = 1.6 Hz, J2 = 7.6 Hz, 2 H), 5.00 (s, 2 H), 3.46 (s, 6 H). 

2.47-2.37 (rn, 2H), 1.66-1.56 (m, 2H), 1.40-1.28 (m, 2H), 1.00-0.90 (m, 2H). D i a s t e r e o m e r :  13CNMR (CDCI 3 

75 MHz): 6 (ppm) 169.1 (s), 148.6 (s), 136.0 (s), 134.8 (s), 129.1, 128.8, 127.3, 126.81, 126.76, 126.7, 121.7 (d), 82.5 (d), 57.4 

(q), 42.6 (d), 33.5 (t), 22.3 it); IH NMR (CDC13, 300MHz): 8 (ppm) 7.61-7.31 (m, 10 H), 7.09-6.96 (m, 4 H), 6.87 (dd, 

JI = 1.7 Hz, J2 =7 .6Hz,  2 H), 6.72 (dd, JI = 1.7Hz, J2 =7.5 Hz, 2H), 5.01 (s, 2H), 3.49 (s, 6H), 2.56-2.52 (m, 2H), 

1.62-1.52 (m, 2 H), 1.25-1.15 (m, 2 H), 1.00-0.86 (m, 2 H). 
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